Lecture 2 - Processes & Threads

Yuchen Ouyang

Outline

e process abstraction

thread abstraction

e process management in Linux

Paper - lightweight contexts

Paper - scheduler activation

1 Process Abstraction

1.1 Process is a running executable file

process = a running executable file/program.
The executable file includes:

e executable code / CPU instructions

e data used by the instructions

1.2 Process composition

Process is the basic isolated protection unit provided by OS, which includes:

e unique ID (pid)

e memory image: stack, heap, code, data, ...

e CPU context: registers (stack pointer, program counter, ... )
e kernel resources (open file table, signal handlers, .. .)
e threads

2 Thread Abstraction

The basic execution unit provided by OS, or, a sequence of CPU instructions that are runnable
ON one processor.

A process can contain one or multiple threads. Every thread is bounded to a certain process.
Every time user create a process, OS will create a corresponding thread bounded to the new
process.

Thread is the basic unit of scheduling.



2.1 Thread composition
Different:
e thread ID (tid, unique in the same process)
e registers (PC, SP, ...)
e stack (threads allocate local data and call functions independently)

Shared in one process:

e heap, text and static data segments

e kernel resources (fd table, ...)

2.2 Process vs. Thread

Threads separate the execution concept from processes. Processes provide the running environ-
ment for threads: pid, address space, fd table, cwd, ...
Benefits:

e Concurrent program implemented by multiple threads within the same process
e Efficient resource sharing (no extra overhead to create/switch vim and other kernel info)
e Utilization of multi-core architectures

e Improves program structure (an extra abstraction layer, process — threads)

2.3 Kernel threads

User threads can transition to kernel threads by getting into traps (syscall/interrupt/fault/. . .).
Kernel threads perform the background operations for user threads in the kernel space, who
are also managed and scheduled by OS itself. All kernel threads share the same address space.
Kernel maintains a thread table and a process table in the kernel space.
usage:

e CPU load balancing migration

e work queue kworker

2.4 User threads

User threads are maintained and scheduled by the runtime library in the user space.

invisible to OS, no thread table in the kernel space

User program calls the thread functions instead of involving kernel operations.

ad. portable (api stable for different OSes), small, fast for creation and switch, flexible for
needs

2.5 Threading model
1:1

one user thread - one kernel thread
popular



N:1

many user threads - one kernel thread

M:N

many user threads - several kernel threads

3 Linux Process Management

3.1 Process states

e running
e ready

e blocked

“running” - scheduler - “ready”
10 operation: “running” — “blocked”
10 finish: “blocked” — “ready”

3.2 fork - create a copy process

fork system call will create a process that is exactly the same as the parent process (except
pid)

one call - two returns (different return values for parent & child)

OS will copy the page table directly, using cow mechanism to delay actual copy on usage
(marking read-only, page faults, handler) — 2 processes have their own separate and
identical address space.

OS will also copy the other states like fd table (stdin, stdout, stderr, ...) and signal
handlers.

3.3 exec - execute new program

exec system call will call loader to load the executable file in the current context.

exec will never return if success

exec will replace the stack, heap, data and code by the specified file (new program) and
start running the first instruction of the new program.

pid and stand io will not be replaced.

Combine fork and exec can add more flexibility to process control, like change permission,
IO redirection, change directory ...

3.4 wait - sync & reap

Parent process can call wait to turn into blocked and wait for child processes to terminate.
When any child process call exit or have error to be terminated, they wake up the waiting
parent process.
Every terminated process becomes a zombie. Its resource will not be reaped until its parent
process wait for the child. If the parent terminates before any child, the child will be reaped by
the init process (pid = 1, always runnable, no parent)



3.5 Linux process descriptor task_struct

Task — process & thread
Each task is a structure, which contains:

e thread info

e task state (running, ready, blocked ...)
e kernel stack address

e priority

e parent task

e children tasks

e memory mapping sections

e open files

e signal handlers

fork() will copy the total struct (3.5 KB) for the new process.
Threads are treated as sharing processes in Linux. They have their task_struct

3.6 Threads in Linux

clone() can be used for creating threads. The flag arguments direct the clone behavior between
processes/threads:

e copy v space
e copy file table

e copy file system info
e copy signal handlers

The first thread (main thread) is the thread group leader.
exec() will terminate all threads except the main thread, and the new program is executed
on the previous main thread.

4 Paper - Lightweight Contexts

4.1 Fork overhead
fork will copy:

e threads, CPU registers
e memory space

e files, credentials, ...

fork() overhead increases exponentially as the number of fork() calls.



4.2 LWC abstraction

(similar resource model in the kernel space)

Light-weight contexts (lwc) isolate the system resources within the process, just like
threads isolate execution contexts from the process concept.

lwc encapsulates:

e memory space (mmap)
e credentials
o files

e CPU registers

Threads are orthogonal to lwcs. Creating an lwc doesn’t start running: When a thread
switches to it, lwc copies the thread state and start executing.

Every thread can only visit one lwc section, which is isolated from other lwcs.
4.3 Use cases

e snapshot - save the current context and create a new one, possibly restore

e server event-handling isolation - prevent info leaking among different sessions

e isolation of sensitive data - signing data

4.4 Evaluation

Switching cost ("2ms) is lower than kernel threads and processes (74.3ms). (user space context)

5 Paper - Scheduler Activation

5.1 Goals

e performance and flexibility of user threads
— scheduling policy and concurrency models in the user lib
e functionality of kernel threads

— no idle processors
— priority management

— process switching, change address space

5.2 SA model

kernel-user notification model: User runtime can adjust the scheduling mechanism according
to the upcall messages from kernel.
M:N threading model

M processors --- kernel(0S) ---- runtime(usr) --- N user threads
->
x*upcall (signal)xx*
<-
*ksyscall*x



require 3 stacks: user thread stack, kernel thread stack, SA stack

Kernel notifies the user-level thread system whenever the kernel changes the number of
processors attached to it or the state of a running user thread is changed; User runtime notifies
the kernel when the application requires more or fewer processors.

5.2.1 Upcall: kernel — user

e add processors — execute a runnable user thread
e processor preempted — user thread returns to the ready list
e SA blocked — give up the processor

e SA unblocked — user thread returns to the ready list

5.2.2 System call: user — kernel
e add processors — allocate more processors
e idle processor — preempt the processor if another process needs it

e no user thread operation need to be reported to the kernel

5.3 Performance
threads > SA » kernel threads > processes
slightly worse

e improve performance or increase granularity of service?

reduce the number of upcalls (switch back the preempted threads in the critical section,
not upcall for preempt threads, ...)



